

Terapia a durata fissa: fitness e stato mutazionale

Gianluca Gaidano, M.D., Ph.D.

Division of Hematology Department of Translational Medicine Università del Piemonte Orientale Novara, Italy

Disclosures

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Abbvie					٧	٧	
AstraZeneca					V	V	
BeiGene					٧	V	
Hikma					V		
Incyte					V	V	
Johnson & Johnson					V	٧	
Lilly					V	V	

Applications of molecular biology in CLL

Baseline evaluation of CLL: "Always" only tests in the clinical practice

Molecular tests at treatment requirement according to iwCLL guidelines

CLL biomarkers in the ESMO guidelines for 1L treatment

Eichhorst et al., Ann Oncol. 2024.

6

CLL biomarkers in the ESMO guidelines for 1L treatment

Eichhorst et al., Ann Oncol. 2024.

7

Clinical applications of predictive and prognostic biomarkers in CLL: Guideline recommendations

	General practice	Clinical trial
FISH for del(13q), del(11q), del(17p), add(12)	Always	Always
TP53 mutations	Always	Always
IG genes	Always	Always

Hallek et al. Blood 2018; 131 (25): 2745-2760

TP53 abnormalities in CLL

Dohner et al, New Engl J Med 2000 ; Zenz et al J Clin Oncol 2010; Rossi et al Blood 2011; Zainuddin et al, Leuk Res 2011; Rossi et al Blood 2014

Clinical impact of TP53 in the CLL14 trial

Ven-Obi mitigates, but does not abolish, the negative prognostic impact of TP53 disruption

Al-Sawaf et al., EHA 2021 S146

ACALABRUTINIB: combination of longest follow up + best safety profile Investigator-Assessed PFS in Patients With Del(17p) and/or Mutated *TP53*

 w/ del(17p) and/or *TP53m*, A+O
 25
 24
 23
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22</td

^aHazard ratio based on unstratified Cox proportional-hazards model.

A = acalabrutinib; CI = confidence interval; CIb = chlorambucil; HR = hazard ratio; NR = not reached; O = Obinutuzumab; PFS = progression free survival; TP53 = tumour protein p53; vs = versus.

¹¹ Sharman JP et al. Oral Presentation Presented at: ASH; December 9-12, 2023; San Diego.

Zanubrutinib activity in TP53 disrupted patients

In the ARM C of the SEQUOIA trial the 24 months of TP53 disrupted patients was 88.9%

In the ALPINE trial zanubrutinib was more effective compared to ibrutinib in *TP53* disrupted patients

Around 60% of CLL patients requiring treatment have an unmutated IGHV mutational status (U-CLL)

Performing IGHV testing and treating appropriately will have a significant impact on patients' outcomes¹

CLL biomarkers in the ESMO guidelines for 1L treatment

Eichhorst et al., Ann Oncol. 2024.

14

Venetoclax-obinutuzumab vs Clb-Obi in previously untreated CLL (CLL14)

Ven-Obi mitigates, but does not completely overcome, the negative prognostic impact of *TP53* abnormalities and of unmutated IGHV genes

Al-Sawaf et al., J Clin Oncol. 2021

Molecular predictors of PFS in CLL with venetoclax-based combinations in the CLL13/GAIA trial

Furstenau et al., Blood 2023

CLL biomarkers in the ESMO guidelines for 1L treatment

Eichhorst et al., Ann Oncol. 2024.

17

ELEVATE-TN 5-year follow-up: Inv PFS in patients with uIGHV & IGHVm

Sharman et al, Lancet 2020; Sharman et al, ASCO 2022

Zanubrutinib activity according to IGHV mutational status and complex karyotype

Zanubrutinb overcomes the prognostic impact complex karyotype

Tam et al., Lancet Oncol. 2022; Xu et al., ASH2023 #1092.

Captivate: Impact of biomarkers

Impact of del(17p)/mutated *TP53* and IGHV Status On Long-Term PFS (Total Pooled Population)

*See Supplementary Information for details. mIGHV, mutated IGHV.

Ghia et al., EHA 2025

GLOW: At 57 Months of Follow-up, Ibr+Ven Improved PFS Versus Clb+O Regardless of IGHV Status

mIGHV lbr+Ven Progression-free survival (%) uIGHV lbr+Ven mIGHV Clb+O End of End of uIGHV Clb+O Clb+O Ibr+Ven Months from date of randomization Patients at risk mIGHV lbr+Ven ulGHV lbr+Ven mIGHV Clb+O uIGHV Clb+O

Progression-Free Survival (ITT) by IGHV Status

- Estimated 54-month PFS rates:
 - Ibr+Ven:
 - 90% for patients with mIGHV
 - 59% for patients with uIGHV
 - Clb+O:
 - 40% for patients with mIGHV
 - 8% for patients with uIGHV

Results based on updated IGHV reclassifications

Investigator-assessed progression-free survival was analyzed

Presented by George Follows at the 65th ASH Annual Meeting and Exposition; December 9-12, 2023; San Diego, CA, USA

Considerations for 1L treatment choice

CLL biomarkers in the ESMO guidelines for 1L treatment

Eichhorst et al., Ann Oncol. 2024.

ESMO guidelines for R/R CLL (2024)

^aFor relapse after CIT, BTKis or venetoclax—rituximab should be considered equally, depending on comorbidities, comedication, access and preference.

^bIbrutinib should be considered carefully particularly in older patients with cardiac comorbidities.

^cNot EMA approved, not FDA approved in relapse.

^dIf a patient relapses after prior treatment with a BTKi, which was stopped due to side-effects, changing to a different BTKi or rechallenge could be considered [III, B].

* not an option in double refractory patients (refractory to both BTKi and BCL2i)

Eichorst et al., Ann Oncol. 2024

Biomarkers in CLL in the era of pathway inhibitors

BTK targeting by covalent and non-covalent BTK inhibitors

Maher et al, Int J Mol Sci 2023

BTK mutations are not the sole responsible for BTKi resistance

IBRUTINIB TREATMENT

- One-third of patients with CLL relapsing on ibrutinib do not carry BTK/PLCG2 mutations, even with a 0.1% sensitivity
- Additional mechanisms, such as del(8p), EGR2 and NF-κB pathway mutations, may be cooperating in determining progression on ibrutinib.

Bonfiglio et al., Blood Adv 2023

BTK targeting by covalent and non-covalent BTK inhibitors

Biomarker	Prevalence before treatment	Prevalence at progression	Mechanism of resistance	Predictive value
BTK point mutations of C481: C481S/R/Y/G	N/A	~50%	Reduced affinity for covalent BTKi	Poor response to covalent BTKi
<i>BTK</i> point mutations of the tyrosine kinase domain L528W, V416L, T474I, M437R, A428D	N/A	~16%	Binding impairment of non-covalent BTKi	Poor response to covalent and non-covalent BTKi
PLCG2 mutations: R665W, L845G, C849R, D993H	N/A	13%	Constitutively active $PLC\gamma 2$	Poor response to BTKi
DL2 mutations. G101V, D103Y, F104I	N/A	~15%	Binding impairment of BCL2is	Poor response to BCL2i
Upregulation of MCL-1 and/or BCL-xL	N/A	N/A	Enhanced apoptosis evasion	Poor response to BCL2i
High serum [IL-10]	N/A	N/A	Reduced T cell response through IL-10R stimulation	Poor response to PD-1/PD-L1 immune checkpoint inhibitors
Low serum [IL-6]	N/A	N/A	CAR-T cell exhaustion due to defective IL-6R stimulation	Poor response to CAR-T cells
Low levels of CD27 ⁺ CD45RO ⁻ CD8 ⁺ T cells	N/A	N/A	Reduced population of active CAR-T cells	Poor response to CAR-T cells

Maher et al, Int J Mol Sci 2023

BTK C481 mutations

preclude irreversible binding of covalent BTKi to BTK
result in a greatly reduced drug potency

BTK T474 gatekeeper

interfere with BTKi (both covalent and noncovalent) binding to BTK
allow for normal B-cell signaling

BTK L528W kinase-dead

hinder BTK catalytic activity

• B-cell signaling is thought to continue via a BTK scaffolding

Genetic resistance to Ibrutinib and Acalabrutinib

- o BTK C481 is the most common
- o BTK Gatekeeper T474I is observed with A but not I
- BTK Kinase-dead mutation L528W rare
- PLCG2 M co-occur with BTK M in I but not A

Woyach JA, Blood. 2024

Genetic resistance to Zanubrutinib

- BTK C481 is the most common
- BTK Kinase-dead mutation L528W in 50%
- *BTK* Gatekeeper T474I not observed
- PLCG2 M exclusive with BTK M
- Small numbers (23 cases from 3 cohorts)

Blombery P, Blood Adv. 2022 Zhu H, Blood. 2022 Brown JR, Blood. 2023

Gain of Function PLCγ2 mutations bypass BTK targeting and constitutively activate BCR signaling

Maher et al, Int J Mol Sci 2023

Applications of molecular biology in CLL

Reasons for treatment failure in Richter syndrome

Mouhssine and Gaidano, Cancers, 2022

Title: International Consensus Statement on Diagnosis, Evaluation, and Research of Richter Transformation: ERIC Recommendations

Short Title: Consensus Statements for Richter Transformation

Authors: Adam S Kittai^{*1}, Monia Marchetti^{*2}, Othman Al-Sawaf³, Ohad Benjamini⁴, Alexey V Danilov⁵, Matthew S Davids⁶, Barbara Eichhorst³, Toby A Eyre⁷, Anna Maria Frustaci⁸, Michael Hallek³, Paul J. Hampel⁹, Yair Herishanu¹⁰, Rodney J Hicks¹¹, Arnon P Kater¹², Rebecca L King¹³, Jose Martin-Subero^{14,15}, Carolyn Owen¹⁶, Erin Parry⁶, Maurilio Ponzoni^{17,18}, Davide Rossi¹⁹, Tanya Siddiqi⁵, Stephan Stilgenbauer²⁰, Constantine S Tam²¹, Elisa ten Hacken²², Philip A Thompson^{23,24}, William Wierda²⁵, Gianluca Gaidano^{#26}, Jennifer A Woyach^{#27}, and Paolo Ghia^{#18,28}

*ASK, MM – Contributed equally to this study [#]GG, JAW, and PG – Contributed equally to this study

Kittai A, Marchetti M et al. 2025 Apr 16; doi: 10.1182/blood.2024028064

The Delphi process

Kittai A, Marchetti M et al. 2025 Apr 16; doi: 10.1182/blood.2024028064

1.2.1. RT should be suspected in patients with clinical decline, B-symptoms, elevated LDH, rapidly enlarging lymphadenopathy, and/or discordant response to CLL treatment *There should be strong consideration for RT in patients with discordant enlarging lymphadenopathy (e.g. one nodal group growing rapidly compared to others)*

1.2.2. In patients with a clinical suspicion of RT, a PET-CT should be attained

1.2.3. The most accessible lesion with the highest avidity should be targeted for biopsy SUV avidity of <5 suggests a low likelihood of RT

1.2.4. Biopsy of the affected tissue for histology assessment is needed to diagnose RT

1.2.5. We strongly recommend attaining an excisional biopsy for diagnosis

1.2.6. All efforts should be made to have pathology reviewed by an expert hemopathologist

Kittai A, Marchetti M et al. 2025 Apr 16; doi: 10.1182/blood.2024028064

Clonal relationship in Richter transformation

Rossi et al., Blood. 2011

ERIC Richter study: Patient characteristics

A total of 316 Richter transformation cases were collected from 24 hematological centers in 14 countries

ERIC countries involved till now in the project

Patients characteristic at the time of CLL Variables N (%)

vallables	N (78)
Median age at CLL diagnosis	61 years (IQR 52-67)
Gender	
Female	121 (34.4%)
Male	231 (65.6%)
Binet stage	
A	161 (51.3%)
В	110 (35.0%)
С	43 (13.7%)
IGHV mutational status	
Mutated	52 (25.5%)
Unmutated	152 (74.5%)
TP53 mutated	
Yes	32 (23.2%)
No	106 (76.8%)
Median number of CLL lines of therapy	3 (IQR 2-4)
Treated with BTKi at any line of treatment	
Yes	124 (40.7%)
No	181 (59.3%)
Treated with BCL2i at any line of treatment	
Yes	62 (22.1%)

Patients characteristic at the time of RT

Variables	N (%)
Median age at Richter	68 years (IQR 60-74)
Median time from CLL diagnosis to Richter transformation	5.6 years (IQR 2.3-9.1)
TP53 mutated Yes No	28 (41.8%) 39 (58.2%)
Histology of Richter	
DLBCL	268 (84.8%)
Hodgkin lymphoma	28 (8.9%)
Other	20 (6.3%)

Moia et al, ERIC 2024

ERIC Richter study: Clonal relationship represents the most important prognostic/predictive factor in Richter transformation

1.2.7. Clonal relationship of the RT tissue and antecedent CLL cells should be tested, as it is one of the strongest prognostic factors for RT survival: patients with clonally unrelated RT have a markedly better prognosis

2.2.1. Clonality should be determined by comparing IG gene rearrangement from the RT tissue to the IG gene rearrangement in the CLL cells

Kittai A, Marchetti M et al. 2025 Apr 16; doi: 10.1182/blood.2024028064

International Cons		n Diagnosis, Evaluation, and Research ansformation	
Context of I Richter transformation (RT) re associated with dismal outcon on the study or management	emains a rare entity and is nes. There is no consensus of RT currently published.	Aim of This Study We convened a group of 29 international experts on RT to establish consensus recommendations on the diagnosis, evaluation, and research of RT.	
Diagnosis/ Prognosis	-We strongly recommend attaining an excisional biopsy on the most metabolically active, accessible lymph node for diagnosis. -Current standard of care treatment with RCHOP-like regimens has poor efficacy.		
Prognostication/ Staging	-Clonality should be determined by comparing IG gene rearrangements from the RT tissue and the CLL cells. -We recommend using a pre-treatment PET-CT to establish the extent of the disease.		
Clinical Trial Recommendations	-If at all possible, patients with RT should be treated on clinical trials. -Response of RT and CLL should be objectively assessed and reported based on both Lugano criteria as well as iwCLL guidelines.		
	Images are in part from Servier	Medical Art, which is licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/)	
should be encouraged.	Prospective clinical stud	iated with RT, participation in clinical trials dies along with collection of primary ional therapeutic strategies for this disease.	

Kittai A, Marchetti M et al. 2025 Apr 16; doi: 10.1182/blood.2024028064

Clinical algorithm for managing Richter transformation

Conclusions

- BCR signaling pathway and BCL2-mediated inhibition of apoptosis represent the mainstay of CLL pathogenesis and provide actionable therapeutic targets
- Biomarkers are relevant in 1L treatment choice also in the era of pathway inhibitors
- Chemoimmunotherapy has no longer a role in CLL treatment if pathway inhibitors are accessible
- Continuous therapy with BTKi overcomes the adverse prognostic impact of disrupted *TP53*
- Multiple chemo-free options are available for 1L treatment according to molecular predictors, fitness, age and patient preferences
- Treatment sequencing of R/R patients highly depends on 1L therapy
- Richter transformation should be appropriately suspected and diagnosed, also considering the new therapeutic developments